3.5.7.3 For resistors connected in parallel:

$$I_{\text{circuit}} = I_{R_i} = I_{R_i} = I_{R_i} = \dots$$
 $V_{\text{Source}} = V_{0} + V_{0} + V_{0}$

3.5.7.4

$$\frac{1}{R_{T}} = \frac{1}{6} + \frac{1}{12}$$
 or $R_{T} = \frac{6 \times 12}{6 + 12}$
So, $R_{T} = 4 \Omega$

Which is correct for this circuit. $R = \frac{V}{I} = \frac{12}{3}$

- Reliability is checked by taking multiple readings and increased if the average (excluding outliers) is used in all calculations. 3.5.7.5 3.5.8.1
- = 4 Ω (6 and 3 in parallel, and this combination in series with the 2) Circuit current

Current through 6 Ω = 4 A Current through 2 Ω = 12 A

Current through 3 Ω = 8 A Potential across 6 Ω = 24 V

Potential across 2 Ω = 24 V Potential across 3 Ω = 24 V

Potential of source = 48 V

В Total resistance = 5 Ω (4, and 4, in parallel, and this combination in series with the 3) Circuit current

Current through 3 Ω = 8 A

Current through 4 Ω_1 = 4 A Current through 4 Ω_2 = 4 A

Potential across 3 Ω = 24 V

Potential across 4 Ω_1 = 16 V

Potential across 4 Ω_2 = 16 V

Total resistance = 10 Ω (12 and 6_2 in parallel, and this in series with the 6_1) Circuit current

Current through 6 $\Omega_1 = 9 A$

Current through 12 Ω = 3 A Current through 6 $\Omega_2 = 6 \text{ A}$

Potential across 6 Ω_1 = 54 V

Potential across 12 Ω = 36 V Potential across 6 Ω_2 = 36 V

Potential of source = 90 V

Total resistance = 8 Ω (6, and 6, in parallel, and this in series with the 5) Circuit current

Current through 6 $\Omega_1 = 3 A$ Current through 6 Ω_2 = 3 A

Current through 5 Ω = 6 A Potential across 6 Ω_1 = 18 V

Potential across 6 Ω_2 = 18 V

Potential across 5 Ω = 30 V

Potential of source = 48 V

Total resistance = 5 Ω (4 and 12 in parallel, and this in series with the 2) Circuit current

Current through 2 Ω = 12 A

Current through 4 Ω = 9 A

Current through $12\Omega = 3 A$

Potential across 2 Ω = 24 V

Potential across 4 Ω = 36 V

Potential across 12 Ω = 36 V

Potential of source = 60 V

```
= 14 \Omega (4, and 4, in parallel, and this in series with the 12)
Total resistance
                        = 6 A
Circuit current
Current through 12 \Omega = 6 A
Current through 4 \Omega_1 = 3 A
Current through 4 \Omega_{o} = 3 A
Potential across 12 Ω = 72 V
Potential across 4 \Omega_{\rm o} = 12 \text{ V}
Potential across 4 \Omega_{\circ} = 12 V
Potential of source = 84 V
                       = 6 \Omega (3 and 6 in parallel, and this combination in series with the 4)
Total resistance
Circuit current
                        = 2 A
Current through 3 \Omega = 1.33 A
Current through 6 \Omega = 0.67 A
Current through 4 \Omega = 2 A
Potential across 3 \Omega = 4 V
Potential across 6 \Omega = 4 V
Potential across 4 \Omega = 8 V
Potential of source = 12 V
                        = 4.67 \Omega (4 and 8 in parallel, and this in series with the R)
Total resistance
                        = 6 A
Circuit current
Current through 4 \Omega = 4 A
Current through 8 \Omega = 2 A
Current through R \Omega = 6 A
Potential across 4 \Omega = 16 \text{ V}
Potential across 8 Ω = 16 V
Potential across R \Omega = 12 \text{ V}
Potential of source = 28 V
Value of resistor R = 2 \Omega
                         = 6 \Omega (6, and 6, in parallel, and this in series with the 3)
Total resistance
                         = 3 A
Circuit current
Current through 6 \Omega_{\rm t} = 1.5 A
Current through 6 \Omega_2 = 1.5 A
Current through 3 \Omega = 3 A
Potential across 6 \Omega_{\rm c} = 9 V
Potential across 6 \Omega_{\circ} = 9 V
Potential across 3 Ω = 9 V
Potential of source = 18 V
Reading on meter A = 1.5 A
                        = 4 \Omega (8 and 4 in series, and this in parallel with the 6)
Total resistance
                         = 9 A
Circuit current
Current through 8 \Omega = 3 A
Current through 4 \Omega = 3 A
Current through 6 \Omega = 6 A
Potential across 8 \Omega = 24 V
Potential across 4 \Omega = 12 V
Potential across 6 \Omega = 36 V
                         = 36 \text{ V}
Potential of source
Reading on meter A = 3 A
Transformers are used to increase or decrease the voltage supplied to homes so that the correct voltage is used with
particular electrical devices.
```

- 3.6.1.1
 - (b) Step-up transformers increase the supply voltage to a higher value. Step-down transformers decrease the supply voltage to a lower voltage.
 - Step-up transformers have more coils in their output coil than in their input coil. Step-down transformers have fewer coils in their output coil than in their input coil.
 - The voltage is directly proportional to the number of turns in the coils.

Science Press